CoreNEURON
tnode.hpp
Go to the documentation of this file.
1 /*
2 # =============================================================================
3 # Copyright (c) 2016 - 2021 Blue Brain Project/EPFL
4 #
5 # See top-level LICENSE file for details.
6 # =============================================================================
7 */
8 
9 #pragma once
10 
11 #include <vector>
12 
13 // experiment with ordering strategies for Tree Nodes
14 namespace coreneuron {
15 class TNode;
16 
17 using VecTNode = std::vector<TNode*>;
18 
19 /**
20  * \class TNode
21  * \brief TNode is the tree node that represents the tree of the compartments
22  */
23 class TNode {
24  public:
25  TNode(int ix);
26  virtual ~TNode();
29  size_t mkhash(); /// Hash algorith that generates a hash based on the hash of the children and
30  /// the number of compartments of the children
31  size_t hash; /// Hash value generated by mkhash
32  size_t treesize; /// Total number of compartments from the current node and below
33  size_t nodevec_index; /// index in nodevec that is set in check()
34  /// In cell permute 2 this is set as Breadth First traversal
35  size_t treenode_order; /// For cell permute 1 (Interleaved):
36  /// - This is the id given to the compartments based on a Breadth First
37  /// access on the tree that is created in the original circuit
38  /// - This is what makes the cell ordering interleaved
39  /// For cell permute 2 (Constant Depth):
40  /// VVVTN: Vector (groups of cells) of vector (levels of this group of
41  /// cells. Maxsize = maxlevel) of vector of TNodes This changes 3 times
42  /// during cell permute 2:
43  /// 1. According to the sorting of the nodes of each level
44  /// 2. According to the sorting of the parents' treenode_order of the
45  /// previous ordering
46  /// 3. According to children and parents data races. Parents and
47  /// children of the tree are moved by question2() so that threads that
48  /// exist on the same warp don't have data races when updating the
49  /// children and parent variables, so that threads have to wait in
50  /// atomic instructions. If there are any races then those are solved by
51  /// atomic instructions.
52  size_t level; /// level of of this compartment in the tree
53  size_t cellindex; /// Cell ID that this compartment belongs to
54  size_t groupindex; /// Initialized index / groupsize
55  int nodeindex;
56 };
57 
58 size_t level_from_leaf(VecTNode&);
59 size_t level_from_root(VecTNode&);
60 
61 /**
62  * \brief Implementation of the advanced interleaving strategy (interleave_permute_type == 2)
63  *
64  * The main steps are the following:
65  * 1. warp_balance function creates balanced groups of cells.
66  * 2. The compartments/tree nodes populate the groups vector (VVVTN) based on their groudindex and
67  * their level (see level_from_root).
68  * 3. The analyze() & question2() functions (operating per group) make sure that each cell is still
69  * a tree (treenode_order) and that the dependent nodes belong to separate warps.
70  */
71 void group_order2(VecTNode&, size_t groupsize, size_t ncell);
72 size_t dist2child(TNode* nd);
73 
74 /**
75  * \brief Use of the LPT (Least Processing Time) algorithm to create balanced groups of cells.
76  *
77  * Competing objectives are to keep identical cells together and also balance warps.
78  *
79  * \param ncell number of cells
80  * \param nodevec vector of compartments from all cells
81  * \return number of warps
82  */
83 size_t warp_balance(size_t ncell, VecTNode& nodevec);
84 
85 #define warpsize 32
86 } // namespace coreneuron
coreneuron::dist2child
size_t dist2child(TNode *nd)
Definition: cellorder2.cpp:153
coreneuron::TNode::hash
size_t hash
Hash algorith that generates a hash based on the hash of the children and the number of compartments ...
Definition: tnode.hpp:31
coreneuron::level_from_root
size_t level_from_root(VecTNode &)
Definition: cellorder1.cpp:203
coreneuron::TNode::nodeindex
int nodeindex
Initialized index / groupsize.
Definition: tnode.hpp:55
coreneuron::TNode::~TNode
virtual ~TNode()
Definition: cellorder1.cpp:61
coreneuron
THIS FILE IS AUTO GENERATED DONT MODIFY IT.
Definition: corenrn_parameters.cpp:12
coreneuron::TNode::mkhash
size_t mkhash()
Definition: cellorder1.cpp:63
coreneuron::ncell
icycle< ncycle;++icycle) { int istride=stride[icycle];nrn_pragma_acc(loop vector) nrn_pragma_omp(loop bind(parallel)) for(int icore=0;icore< warpsize;++icore) { int i=ii+icore;if(icore< istride) { int ip=GPU_PARENT(i);GPU_RHS(i) -=GPU_B(i) *GPU_RHS(ip);GPU_RHS(i)/=GPU_D(i);} i+=istride;} ii+=istride;}}void solve_interleaved2(int ith) { NrnThread *nt=nrn_threads+ith;InterleaveInfo &ii=interleave_info[ith];int nwarp=ii.nwarp;if(nwarp==0) return;int ncore=nwarp *warpsize;int *ncycles=ii.cellsize;int *stridedispl=ii.stridedispl;int *strides=ii.stride;int *rootbegin=ii.firstnode;int *nodebegin=ii.lastnode;nrn_pragma_acc(parallel loop gang present(nt[0:1], strides[0:nstride], ncycles[0:nwarp], stridedispl[0:nwarp+1], rootbegin[0:nwarp+1], nodebegin[0:nwarp+1]) if(nt->compute_gpu) async(nt->stream_id)) nrn_pragma_omp(target teams loop if(nt->compute_gpu)) for(int icore=0;icore< ncore;icore+=warpsize) { int iwarp=icore/warpsize;int ic=icore &(warpsize - 1);int ncycle=ncycles[iwarp];int *stride=strides+stridedispl[iwarp];int root=rootbegin[iwarp];int lastroot=rootbegin[iwarp+1];int firstnode=nodebegin[iwarp];int lastnode=nodebegin[iwarp+1];triang_interleaved2(nt, ic, ncycle, stride, lastnode);bksub_interleaved2(nt, root+ic, lastroot, ic, ncycle, stride, firstnode);} nrn_pragma_acc(wait(nt->stream_id))}void solve_interleaved1(int ith) { NrnThread *nt=nrn_threads+ith;int ncell=nt-> ncell
Definition: cellorder.cpp:636
coreneuron::TNode
TNode is the tree node that represents the tree of the compartments.
Definition: tnode.hpp:23
coreneuron::warp_balance
size_t warp_balance(size_t ncell, VecTNode &nodevec)
Use of the LPT (Least Processing Time) algorithm to create balanced groups of cells.
Definition: balance.cpp:43
coreneuron::TNode::groupindex
size_t groupindex
Cell ID that this compartment belongs to.
Definition: tnode.hpp:54
coreneuron::group_order2
void group_order2(VecTNode &, size_t groupsize, size_t ncell)
Implementation of the advanced interleaving strategy (interleave_permute_type == 2)
Definition: cellorder2.cpp:460
coreneuron::TNode::treesize
size_t treesize
Hash value generated by mkhash.
Definition: tnode.hpp:32
coreneuron::TNode::cellindex
size_t cellindex
level of of this compartment in the tree
Definition: tnode.hpp:53
coreneuron::TNode::treenode_order
size_t treenode_order
index in nodevec that is set in check() In cell permute 2 this is set as Breadth First traversal
Definition: tnode.hpp:35
coreneuron::groupsize
static size_t groupsize
Definition: cellorder1.cpp:25
coreneuron::TNode::children
VecTNode children
Definition: tnode.hpp:28
coreneuron::TNode::level
size_t level
For cell permute 1 (Interleaved):
Definition: tnode.hpp:52
coreneuron::TNode::parent
TNode * parent
Definition: tnode.hpp:27
coreneuron::VecTNode
std::vector< TNode * > VecTNode
Definition: tnode.hpp:17
coreneuron::TNode::nodevec_index
size_t nodevec_index
Total number of compartments from the current node and below.
Definition: tnode.hpp:33
coreneuron::level_from_leaf
size_t level_from_leaf(VecTNode &)
Definition: cellorder1.cpp:218
coreneuron::TNode::TNode
TNode(int ix)
Definition: cellorder1.cpp:48