#include <H5Slice_traits.hpp>
|
Selection | select (const HyperSlab &hyperslab) const |
| Select an hyperslab in the current Slice/Dataset.
|
|
Selection | select (const HyperSlab &hyperslab, const DataSpace &memspace) const |
| Select an hyperslab in the current Slice/Dataset.
|
|
Selection | select (const std::vector< size_t > &offset, const std::vector< size_t > &count, const std::vector< size_t > &stride={}, const std::vector< size_t > &block={}) const |
| Select a region in the current Slice/Dataset of count points at offset separated by stride . If strides are not provided they will default to 1 in all dimensions.
|
|
Selection | select (const std::vector< size_t > &columns) const |
| Select a set of columns in the last dimension of this dataset.
|
|
Selection | select (const ElementSet &elements) const |
| Select a region in the current Slice/Dataset out of a list of elements.
|
|
template<typename T > |
T | read (const DataTransferProps &xfer_props=DataTransferProps()) const |
|
template<typename T > |
void | read (T &array, const DataTransferProps &xfer_props=DataTransferProps()) const |
|
template<typename T > |
void | read (T *array, const DataType &dtype, const DataTransferProps &xfer_props=DataTransferProps()) const |
|
template<typename T > |
void | read (T *array, const DataTransferProps &xfer_props=DataTransferProps()) const |
|
template<typename T > |
void | read_raw (T *array, const DataType &dtype, const DataTransferProps &xfer_props=DataTransferProps()) const |
|
template<typename T > |
void | read_raw (T *array, const DataTransferProps &xfer_props=DataTransferProps()) const |
|
template<typename T > |
void | write (const T &buffer, const DataTransferProps &xfer_props=DataTransferProps()) |
|
template<typename T > |
void | write_raw (const T *buffer, const DataType &mem_datatype, const DataTransferProps &xfer_props=DataTransferProps()) |
|
template<typename T > |
void | write_raw (const T *buffer, const DataTransferProps &xfer_props=DataTransferProps()) |
|
◆ read() [1/4]
template<typename Derivate >
template<typename T >
◆ read() [2/4]
template<typename Derivate >
template<typename T >
Read the entire dataset into a buffer
An exception is raised is if the numbers of dimension of the buffer and of the dataset are different.
The array type can be a N-pointer or a N-vector. For plain pointers not dimensionality checking will be performed, it is the user's responsibility to ensure that the right amount of space has been allocated.
◆ read() [3/4]
template<typename Derivate >
template<typename T >
Read the entire dataset into a raw buffer
- Deprecated
- Use
read_raw
instead.
Same as read(T*, const DataType&, const DataTransferProps&)
. However, this overload deduces the HDF5 datatype of the element of array
from T
. Note, that the file datatype is already fixed.
- Parameters
-
array | A buffer containing enough space for the data |
xfer_props | Data Transfer properties |
◆ read() [4/4]
template<typename Derivate >
template<typename T >
Read the entire dataset into a raw buffer
- Deprecated
- Use
read_raw
instead.
No dimensionality checks will be performed, it is the user's responsibility to ensure that the right amount of space has been allocated.
- Parameters
-
array | A buffer containing enough space for the data |
dtype | The datatype of elements of the in memory buffer. |
xfer_props | Data Transfer properties |
◆ read_raw() [1/2]
template<typename Derivate >
template<typename T >
Read the entire dataset into a raw buffer
Same as read(T*, const DataType&, const DataTransferProps&)
. However, this overload deduces the HDF5 datatype of the element of array
from T
. Note, that the file datatype is already fixed.
- Parameters
-
array | A buffer containing enough space for the data |
xfer_props | Data Transfer properties |
◆ read_raw() [2/2]
template<typename Derivate >
template<typename T >
Read the entire dataset into a raw buffer
No dimensionality checks will be performed, it is the user's responsibility to ensure that the right amount of space has been allocated.
- Parameters
-
array | A buffer containing enough space for the data |
dtype | The type of the data, in case it cannot be automatically guessed |
xfer_props | Data Transfer properties |
◆ select() [1/5]
template<typename Derivate >
Select a region in the current Slice/Dataset out of a list of elements.
◆ select() [2/5]
template<typename Derivate >
Select an hyperslab
in the current Slice/Dataset.
HyperSlabs can be either regular or irregular. Irregular hyperslabs are typically generated by taking the union of regular hyperslabs. An irregular hyperslab, in general, does not fit nicely into a multi-dimensional array, but only a subset of such an array.
Therefore, the only memspaces supported for general hyperslabs are one-dimensional arrays.
◆ select() [3/5]
template<typename Derivate >
Select an hyperslab
in the current Slice/Dataset.
If the selection can be read into a simple, multi-dimensional dataspace, then this overload enable specifying the shape of the memory dataspace with memspace
. Note, that simple implies no offsets, strides or number of blocks, just the size of the block in each dimension.
◆ select() [4/5]
template<typename Derivate >
Select a set of columns in the last dimension of this dataset.
The column indices must be smaller than the dimension size.
◆ select() [5/5]
template<typename Derivate >
Selection HighFive::SliceTraits< Derivate >::select |
( |
const std::vector< size_t > & | offset, |
|
|
const std::vector< size_t > & | count, |
|
|
const std::vector< size_t > & | stride = {}, |
|
|
const std::vector< size_t > & | block = {} ) const |
|
inline |
Select a region in the current Slice/Dataset of count
points at offset
separated by stride
. If strides are not provided they will default to 1 in all dimensions.
vector offset and count have to be from the same dimension
◆ write()
template<typename Derivate >
template<typename T >
Write the integrality N-dimension buffer to this dataset An exception is raised is if the numbers of dimension of the buffer and of the dataset are different
The array type can be a N-pointer or a N-vector ( e.g int** integer two dimensional array )
◆ write_raw() [1/2]
template<typename Derivate >
template<typename T >
Write from a raw pointer into this dataset.
Same as write_raw(const T*, const DataTransferProps&)
. However, this overload attempts to guess the data type of buffer
, i.e. the memory datatype. Note that the file datatype is already fixed.
◆ write_raw() [2/2]
template<typename Derivate >
template<typename T >
Write from a raw pointer into this dataset.
No dimensionality checks will be performed, it is the user's responsibility to ensure that the buffer holds the right amount of elements. For n-dimensional matrices the buffer layout follows H5 default conventions.
Note, this is the shallowest wrapper around H5Dwrite
and should be used if full control is needed. Generally prefer write
.
- Parameters
-
buffer | A buffer containing the data to be written |
dtype | The datatype of buffer , i.e. the memory data type. |
xfer_props | The HDF5 data transfer properties, e.g. collective MPI-IO. |
The documentation for this class was generated from the following files: