CoreNEURON
nrn_setup.cpp
Go to the documentation of this file.
1 /*
2 # =============================================================================
3 # Copyright (c) 2016 - 2021 Blue Brain Project/EPFL
4 #
5 # See top-level LICENSE file for details.
6 # =============================================================================.
7 */
8 
9 #include <algorithm>
10 #include <vector>
11 #include <map>
12 #include <cstring>
13 #include <mutex>
14 
16 #include "coreneuron/nrnconf.h"
26 #include "coreneuron/mpi/nrnmpi.h"
35 #include "coreneuron/io/phase1.hpp"
36 #include "coreneuron/io/phase2.hpp"
39 
40 // callbacks into nrn/src/nrniv/nrnbbcore_write.cpp
43 
44 
45 /// --> Coreneuron
48 
49 void (*nrn2core_group_ids_)(int*);
50 
51 extern "C" {
52 SetupTransferInfo* (*nrn2core_get_partrans_setup_info_)(int ngroup,
53  int cn_nthread,
54  size_t cn_sidt_size);
55 }
56 
58  int& bsize,
59  int& n_pr,
60  void**& vpr,
61  int& n_trajec,
62  int*& types,
63  int*& indices,
64  double**& pvars,
65  double**& varrays);
66 
67 void (*nrn2core_trajectory_values_)(int tid, int n_pr, void** vpr, double t);
68 
69 void (*nrn2core_trajectory_return_)(int tid, int n_pr, int bsize, int vecsz, void** vpr, double t);
70 
71 int (*nrn2core_all_spike_vectors_return_)(std::vector<double>& spikevec, std::vector<int>& gidvec);
72 
73 void (*nrn2core_all_weights_return_)(std::vector<double*>& weights);
74 
75 // file format defined in cooperation with nrncore/src/nrniv/nrnbbcore_write.cpp
76 // single integers are ascii one per line. arrays are binary int or double
77 // Note that regardless of the gid contents of a group, since all gids are
78 // globally unique, a filename convention which involves the first gid
79 // from the group is adequate. Also note that balance is carried out from a
80 // per group perspective and launching a process consists of specifying
81 // a list of group ids (first gid of the group) for each process.
82 //
83 // <firstgid>_1.dat
84 // n_presyn, n_netcon
85 // output_gids (npresyn) with -(type+1000*index) for those acell with no gid
86 // netcon_srcgid (nnetcon) -(type+1000*index) refers to acell with no gid
87 // -1 means the netcon has no source (not implemented)
88 // Note that the negative gids are only thread unique and not process unique.
89 // We create a thread specific hash table for the negative gids for each thread
90 // when <firstgid>_1.dat is read and then destroy it after <firstgid>_2.dat
91 // is finished using it. An earlier implementation which attempted to
92 // encode the thread number into the negative gid
93 // (i.e -ith - nth*(type +1000*index)) failed due to not large enough
94 // integer domain size.
95 // Note that for file transfer it is an error if a negative srcgid is
96 // not in the same thread as the target. This is because there it may
97 // not be the case that threads in a NEURON process end up on same process
98 // in CoreNEURON. NEURON will raise an error if this
99 // is the case. However, for direct memory transfer, it is allowed that
100 // a negative srcgid may be in a different thread than the target. So
101 // nrn2core_get_dat1 has a last arg netcon_negsrcgid_tid that specifies
102 // for the negative gids in netcon_srcgid (in that order) the source thread.
103 //
104 // <firstgid>_2.dat
105 // n_real_cell, n_output, n_real_output, nnode
106 // ndiam - 0 if no mechanism has dparam with diam semantics, or nnode
107 // nmech - includes artcell mechanisms
108 // for the nmech tml mechanisms
109 // type, nodecount
110 // nidata, nvdata, nweight
111 // v_parent_index (nnode)
112 // actual_a, b, area, v (nnode)
113 // diam - if ndiam > 0. Note that only valid diam is for those nodes with diam semantics mechanisms
114 // for the nmech tml mechanisms
115 // nodeindices (nodecount) but only if not an artificial cell
116 // data (nodecount*param_size)
117 // pdata (nodecount*dparam_size) but only if dparam_size > 0 on this side.
118 // output_vindex (n_presyn) >= 0 associated with voltages -(type+1000*index) for acell
119 // output_threshold (n_real_output)
120 // netcon_pnttype (nnetcon) <=0 if a NetCon does not have a target.
121 // netcon_pntindex (nnetcon)
122 // weights (nweight)
123 // delays (nnetcon)
124 // for the nmech tml mechanisms that have a nrn_bbcore_write method
125 // type
126 // icnt
127 // dcnt
128 // int array (number specified by the nodecount nrn_bbcore_write
129 // to be intepreted by this side's nrn_bbcore_read method)
130 // double array
131 // #VectorPlay_instances, for each of these instances
132 // 4 (VecPlayContinuousType)
133 // mtype
134 // index (from Memb_list.data)
135 // vecsize
136 // yvec
137 // tvec
138 //
139 // The critical issue requiring careful attention is that a coreneuron
140 // process reads many coreneuron thread files with a result that, although
141 // the conceptual
142 // total n_pre is the sum of all the n_presyn from each thread as is the
143 // total number of output_gid, the number of InputPreSyn instances must
144 // be computed here from a knowledge of all thread's netcon_srcgid after
145 // all thread's output_gids have been registered. We want to save the
146 // "individual allocation of many small objects" memory overhead by
147 // allocating a single InputPreSyn array for the entire process.
148 // For this reason cellgroup data are divided into two separate
149 // files with the first containing output_gids and netcon_srcgid which are
150 // stored in the nt.presyns array and nt.netcons array respectively
151 namespace coreneuron {
152 static OMP_Mutex mut;
153 
154 /// Vector of maps for negative presyns
155 std::vector<std::map<int, PreSyn*>> neg_gid2out;
156 /// Maps for ouput and input presyns
157 std::map<int, PreSyn*> gid2out;
158 std::map<int, InputPreSyn*> gid2in;
159 
160 /// InputPreSyn.nc_index_ to + InputPreSyn.nc_cnt_ give the NetCon*
161 std::vector<NetCon*> netcon_in_presyn_order_;
162 
163 /// Only for setup vector of netcon source gids
164 std::vector<int*> nrnthreads_netcon_srcgid;
165 
166 /// If a nrnthreads_netcon_srcgid is negative, need to determine the thread when
167 /// in order to use the correct neg_gid2out[tid] map
168 std::vector<std::vector<int>> nrnthreads_netcon_negsrcgid_tid;
169 
170 /* read files.dat file and distribute cellgroups to all mpi ranks */
171 void nrn_read_filesdat(int& ngrp, int*& grp, const char* filesdat) {
172  patstimtype = nrn_get_mechtype("PatternStim");
173  if (corenrn_embedded) {
175  grp = new int[ngrp + 1];
176  (*nrn2core_group_ids_)(grp);
177  return;
178  }
179 
180  FILE* fp = fopen(filesdat, "r");
181 
182  if (!fp) {
183  nrn_fatal_error("No input file ( %s ) with nrnthreads, exiting...", filesdat);
184  }
185 
186  char version[256];
187  nrn_assert(fscanf(fp, "%s\n", version) == 1);
189 
190  int iNumFiles = 0;
191  nrn_assert(fscanf(fp, "%d\n", &iNumFiles) == 1);
192 
193  // temporary strategem to figure out if model uses gap junctions while
194  // being backward compatible
195  if (iNumFiles == -1) {
196  nrn_assert(fscanf(fp, "%d\n", &iNumFiles) == 1);
197  nrn_have_gaps = true;
198  if (nrnmpi_myid == 0) {
199  printf("Model uses gap junctions\n");
200  }
201  }
202 
203  if (nrnmpi_numprocs > iNumFiles && nrnmpi_myid == 0) {
204  printf(
205  "Info : The number of input datasets are less than ranks, some ranks will be idle!\n");
206  }
207 
208  ngrp = 0;
209  grp = new int[iNumFiles / nrnmpi_numprocs + 1];
210 
211  // irerate over gids in files.dat
212  for (int iNum = 0; iNum < iNumFiles; ++iNum) {
213  int iFile;
214 
215  nrn_assert(fscanf(fp, "%d\n", &iFile) == 1);
216  if ((iNum % nrnmpi_numprocs) == nrnmpi_myid) {
217  grp[ngrp] = iFile;
218  ngrp++;
219  }
220  }
221 
222  fclose(fp);
223 }
224 
225 void netpar_tid_gid2ps(int tid, int gid, PreSyn** ps, InputPreSyn** psi) {
226  /// for gid < 0 returns the PreSyn* in the thread (tid) specific map.
227  *ps = nullptr;
228  *psi = nullptr;
229 
230  if (gid >= 0) {
231  auto gid2out_it = gid2out.find(gid);
232  if (gid2out_it != gid2out.end()) {
233  *ps = gid2out_it->second;
234  } else {
235  auto gid2in_it = gid2in.find(gid);
236  if (gid2in_it != gid2in.end()) {
237  *psi = gid2in_it->second;
238  }
239  }
240  } else {
241  auto gid2out_it = neg_gid2out[tid].find(gid);
242  if (gid2out_it != neg_gid2out[tid].end()) {
243  *ps = gid2out_it->second;
244  }
245  }
246 }
247 
249  // allocate the process wide InputPreSyn array
250  // all the output_gid have been registered and associated with PreSyn.
251  // now count the needed InputPreSyn by filling the netpar::gid2in map
252  gid2in.clear();
253 
254  // now have to fill the new table
255  // do not need to worry about negative gid overlap since only use
256  // it to search for PreSyn in this thread.
257 
258  std::vector<InputPreSyn*> inputpresyn_;
259 
260  for (int ith = 0; ith < nrn_nthread; ++ith) {
261  NrnThread& nt = nrn_threads[ith];
262  // associate gid with InputPreSyn and increase PreSyn and InputPreSyn count
263  nt.n_input_presyn = 0;
264  // if single thread or file transfer then definitely empty.
265  std::vector<int>& negsrcgid_tid = nrnthreads_netcon_negsrcgid_tid[ith];
266  size_t i_tid = 0;
267  for (int i = 0; i < nt.n_netcon; ++i) {
268  int gid = nrnthreads_netcon_srcgid[ith][i];
269  if (gid >= 0) {
270  /// If PreSyn or InputPreSyn is already in the map
271  auto gid2out_it = gid2out.find(gid);
272  if (gid2out_it != gid2out.end()) {
273  /// Increase PreSyn count
274  ++gid2out_it->second->nc_cnt_;
275  continue;
276  }
277  auto gid2in_it = gid2in.find(gid);
278  if (gid2in_it != gid2in.end()) {
279  /// Increase InputPreSyn count
280  ++gid2in_it->second->nc_cnt_;
281  continue;
282  }
283 
284  /// Create InputPreSyn and increase its count
285  InputPreSyn* psi = new InputPreSyn;
286  ++psi->nc_cnt_;
287  gid2in[gid] = psi;
288  inputpresyn_.push_back(psi);
289  ++nt.n_input_presyn;
290  } else {
291  int tid = nt.id;
292  if (!negsrcgid_tid.empty()) {
293  tid = negsrcgid_tid[i_tid++];
294  }
295  auto gid2out_it = neg_gid2out[tid].find(gid);
296  if (gid2out_it != neg_gid2out[tid].end()) {
297  /// Increase negative PreSyn count
298  ++gid2out_it->second->nc_cnt_;
299  }
300  }
301  }
302  }
303 
304  // now, we can opportunistically create the NetCon* pointer array
305  // to save some memory overhead for
306  // "large number of small array allocation" by
307  // counting the number of NetCons each PreSyn and InputPreSyn point to.
308  // Conceivably the nt.netcons could become a process global array
309  // in which case the NetCon* pointer array could become an integer index
310  // array. More speculatively, the index array could be eliminated itself
311  // if the process global NetCon array were ordered properly but that
312  // would interleave NetCon from different threads. Not a problem for
313  // serial threads but the reordering would propagate to nt.pntprocs
314  // if the NetCon data pointers are also replaced by integer indices.
315 
316  // First, allocate the pointer array.
317  int n_nc = 0;
318  for (int ith = 0; ith < nrn_nthread; ++ith) {
319  n_nc += nrn_threads[ith].n_netcon;
320  }
321  netcon_in_presyn_order_.resize(n_nc);
322  n_nc = 0;
323 
324  // fill the indices with the offset values and reset the nc_cnt_
325  // such that we use the nc_cnt_ in the following loop to assign the NetCon
326  // to the right place
327  // for PreSyn
328  int offset = 0;
329  for (int ith = 0; ith < nrn_nthread; ++ith) {
330  NrnThread& nt = nrn_threads[ith];
331  for (int i = 0; i < nt.n_presyn; ++i) {
332  PreSyn& ps = nt.presyns[i];
333  ps.nc_index_ = offset;
334  offset += ps.nc_cnt_;
335  ps.nc_cnt_ = 0;
336  }
337  }
338  // for InputPreSyn
339  for (auto psi: inputpresyn_) {
340  psi->nc_index_ = offset;
341  offset += psi->nc_cnt_;
342  psi->nc_cnt_ = 0;
343  }
344 
345  inputpresyn_.clear();
346 
347  // with gid to InputPreSyn and PreSyn maps we can setup the multisend
348  // target lists.
349  if (use_multisend_) {
350 #if NRN_MULTISEND
352 #endif
353  }
354 
355  // fill the netcon_in_presyn_order and recompute nc_cnt_
356  // note that not all netcon_in_presyn will be filled if there are netcon
357  // with no presyn (ie. nrnthreads_netcon_srcgid[nt.id][i] = -1) but that is ok since they are
358  // only used via ps.nc_index_ and ps.nc_cnt_;
359  for (int ith = 0; ith < nrn_nthread; ++ith) {
360  NrnThread& nt = nrn_threads[ith];
361  // if single thread or file transfer then definitely empty.
362  std::vector<int>& negsrcgid_tid = nrnthreads_netcon_negsrcgid_tid[ith];
363  size_t i_tid = 0;
364  for (int i = 0; i < nt.n_netcon; ++i) {
365  NetCon* nc = nt.netcons + i;
366  int gid = nrnthreads_netcon_srcgid[ith][i];
367  int tid = ith;
368  if (!negsrcgid_tid.empty() && gid < -1) {
369  tid = negsrcgid_tid[i_tid++];
370  }
371  PreSyn* ps;
372  InputPreSyn* psi;
373  netpar_tid_gid2ps(tid, gid, &ps, &psi);
374  if (ps) {
375  netcon_in_presyn_order_[ps->nc_index_ + ps->nc_cnt_] = nc;
376  ++ps->nc_cnt_;
377  ++n_nc;
378  } else if (psi) {
379  netcon_in_presyn_order_[psi->nc_index_ + psi->nc_cnt_] = nc;
380  ++psi->nc_cnt_;
381  ++n_nc;
382  }
383  }
384  }
385 
386  /// Resize the vector to its actual size of the netcons put in it
387  netcon_in_presyn_order_.resize(n_nc);
388 }
389 
390 /// Clean up
392  for (int ith = 0; ith < nrn_nthread; ++ith) {
393  if (nrnthreads_netcon_srcgid[ith])
394  delete[] nrnthreads_netcon_srcgid[ith];
395  }
396  nrnthreads_netcon_srcgid.clear();
398  neg_gid2out.clear();
399 }
400 
401 void nrn_setup(const char* filesdat,
402  bool is_mapping_needed,
403  CheckPoints& checkPoints,
404  bool run_setup_cleanup,
405  const char* datpath,
406  const char* restore_path,
407  double* mindelay) {
408  double time = nrn_wtime();
409 
410  int ngroup;
411  int* gidgroups;
412  nrn_read_filesdat(ngroup, gidgroups, filesdat);
413  UserParams userParams(ngroup,
414  gidgroups,
415  datpath,
416  strlen(restore_path) == 0 ? datpath : restore_path,
417  checkPoints);
418 
419 
420  // temporary bug work around. If any process has multiple threads, no
421  // process can have a single thread. So, for now, if one thread, make two.
422  // Fortunately, empty threads work fine.
423  // Allocate NrnThread* nrn_threads of size ngroup (minimum 2)
424  // Note that rank with 0 dataset/cellgroup works fine
425  nrn_threads_create(userParams.ngroup <= 1 ? 2 : userParams.ngroup);
426 
427  // from nrn_has_net_event create pnttype2presyn for use in phase2.
428  auto& memb_func = corenrn.get_memb_funcs();
429  auto& pnttype2presyn = corenrn.get_pnttype2presyn();
430  auto& nrn_has_net_event_ = corenrn.get_has_net_event();
431  pnttype2presyn.clear();
432  pnttype2presyn.resize(memb_func.size(), -1);
433  for (size_t i = 0; i < nrn_has_net_event_.size(); ++i) {
434  pnttype2presyn[nrn_has_net_event_[i]] = i;
435  }
436 
438 
439  if (nrn_nthread > 1) {
440  // NetCvode construction assumed one thread. Need nrn_nthread instances
441  // of NetCvodeThreadData. Here since possible checkpoint restore of
442  // tqueue at end of phase2.
443  nrn_p_construct();
444  }
445 
446  if (use_solve_interleave) {
448  }
449 
450  /// Reserve vector of maps of size ngroup for negative gid-s
451  /// std::vector< std::map<int, PreSyn*> > neg_gid2out;
452  neg_gid2out.resize(userParams.ngroup);
453 
454  // bug fix. gid2out is cumulative over all threads and so do not
455  // know how many there are til after phase1
456  // A process's complete set of output gids and allocation of each thread's
457  // nt.presyns and nt.netcons arrays.
458  // Generates the gid2out map which is needed
459  // to later count the required number of InputPreSyn
460  /// gid2out - map of output presyn-s
461  /// std::map<int, PreSyn*> gid2out;
462  gid2out.clear();
463 
465  for (int i = 0; i < nrn_nthread; ++i)
466  nrnthreads_netcon_srcgid[i] = nullptr;
467 
468  // Gap junctions used to be done first in the sense of reading files
469  // and calling gap_mpi_setup. But during phase2, gap_thread_setup and
470  // gap_indices_permute were called after NrnThread.data was in its final
471  // layout and mechanism permutation was determined. This is no longer
472  // ideal as it necessitates keeping setup_info_ in existence to the end
473  // of phase2. So gap junction setup is deferred to after phase2.
474 
476  if (!corenrn_embedded) {
477  coreneuron::phase_wrapper<coreneuron::phase::one>(userParams);
478  } else {
480  Phase1 p1{n->id};
481  NrnThread& nt = *n;
482  p1.populate(nt, mut);
483  });
484  }
485 
486  // from the gid2out map and the nrnthreads_netcon_srcgid array,
487  // fill the gid2in, and from the number of entries,
488  // allocate the process wide InputPreSyn array
490 
491  // read the rest of the gidgroup's data and complete the setup for each
492  // thread.
493  /* nrn_multithread_job supports serial, pthread, and openmp. */
494  coreneuron::phase_wrapper<coreneuron::phase::two>(userParams, corenrn_embedded);
495 
496  // gap junctions
497  // Gaps are done after phase2, in order to use layout and permutation
498  // information via calls to stdindex2ptr.
499  if (nrn_have_gaps) {
501  if (!corenrn_embedded) {
503  coreneuron::phase_wrapper<coreneuron::gap>(userParams);
504  } else {
505  nrn_partrans::setup_info_ = (*nrn2core_get_partrans_setup_info_)(userParams.ngroup,
506  nrn_nthread,
507  sizeof(sgid_t));
508  }
509 
512 
513  // Whether allocated in NEURON or here, delete here.
514  delete[] nrn_partrans::setup_info_;
515  nrn_partrans::setup_info_ = nullptr;
516  }
517 
518  if (is_mapping_needed)
519  coreneuron::phase_wrapper<coreneuron::phase::three>(userParams);
520 
521  *mindelay = set_mindelay(*mindelay);
522 
523  if (run_setup_cleanup) // if run_setup_cleanup==false, user must call nrn_setup_cleanup() later
525 
526 #if INTERLEAVE_DEBUG
527  // mk_cell_indices debug code is supposed to be used with cell-per-core permutations
529  mk_cell_indices();
530  }
531 #endif
532 
533  /// Allocate memory for fast_imem calculation
535 
536  /// Generally, tables depend on a few parameters. And if those parameters change,
537  /// then the table needs to be recomputed. This is obviously important in NEURON
538  /// since the user can change those parameters at any time. However, there is no
539  /// c example for CoreNEURON so can't see what it looks like in that context.
540  /// Boils down to setting up a function pointer of the function _check_table_thread(),
541  /// which is only executed by StochKV.c.
542  nrn_mk_table_check(); // was done in nrn_thread_memblist_setup in multicore.c
543 
544  size_t model_size_bytes;
545 
548  model_size_bytes = model_size(true);
549  } else {
550  model_size_bytes = model_size(false);
551  }
552 
553  if (nrnmpi_myid == 0 && !corenrn_param.is_quiet()) {
554  printf(" Setup Done : %.2lf seconds \n", nrn_wtime() - time);
555 
556  if (model_size_bytes < 1024) {
557  printf(" Model size : %ld bytes\n", model_size_bytes);
558  } else if (model_size_bytes < 1024 * 1024) {
559  printf(" Model size : %.2lf kB\n", model_size_bytes / 1024.);
560  } else if (model_size_bytes < 1024 * 1024 * 1024) {
561  printf(" Model size : %.2lf MB\n", model_size_bytes / (1024. * 1024.));
562  } else {
563  printf(" Model size : %.2lf GB\n", model_size_bytes / (1024. * 1024. * 1024.));
564  }
565  }
566 
567  delete[] userParams.gidgroups;
568 }
569 
571  for (NrnThreadMembList* tml = nt.tml; tml; tml = tml->next) {
572  Memb_func& mf = corenrn.get_memb_func(tml->index);
573  Memb_list* ml = tml->ml;
574  if (mf.thread_size_) {
576  if (mf.thread_mem_init_) {
577  {
578  const std::lock_guard<OMP_Mutex> lock(mut);
579  (*mf.thread_mem_init_)(ml->_thread);
580  }
581  }
582  } else {
583  ml->_thread = nullptr;
584  }
585  }
586 }
587 
588 void read_phasegap(NrnThread& nt, UserParams& userParams) {
589  auto& F = userParams.file_reader[nt.id];
590  if (F.fail()) {
591  return;
592  }
593 
594  F.checkpoint(0);
595 
596  int sidt_size = F.read_int();
597  assert(sidt_size == int(sizeof(sgid_t)));
598  std::size_t ntar = F.read_int();
599  std::size_t nsrc = F.read_int();
600 
601  auto& si = nrn_partrans::setup_info_[nt.id];
602  si.src_sid.resize(nsrc);
603  si.src_type.resize(nsrc);
604  si.src_index.resize(nsrc);
605  if (nsrc) {
606  F.read_array<sgid_t>(si.src_sid.data(), nsrc);
607  F.read_array<int>(si.src_type.data(), nsrc);
608  F.read_array<int>(si.src_index.data(), nsrc);
609  }
610 
611  si.tar_sid.resize(ntar);
612  si.tar_type.resize(ntar);
613  si.tar_index.resize(ntar);
614  if (ntar) {
615  F.read_array<sgid_t>(si.tar_sid.data(), ntar);
616  F.read_array<int>(si.tar_type.data(), ntar);
617  F.read_array<int>(si.tar_index.data(), ntar);
618  }
619 
620 #if CORENRN_DEBUG
621  printf("%d read_phasegap tid=%d nsrc=%d ntar=%d\n", nrnmpi_myid, nt.id, nsrc, ntar);
622  for (int i = 0; i < nsrc; ++i) {
623  printf("src %z %d %d\n", size_t(si.src_sid[i]), si.src_type[i], si.src_index[i]);
624  }
625  for (int i = 0; i < ntar; ++i) {
626  printf("tar %z %d %d\n", size_t(si.src_sid[i]), si.src_type[i], si.src_index[i]);
627  }
628 #endif
629 }
630 
631 // This function is related to nrn_dblpntr2nrncore in Neuron to determine which values should
632 // be transferred from CoreNeuron. Types correspond to the value to be transferred based on
633 // mech_type enum or non-artificial cell mechanisms.
634 // take into account alignment, layout, permutation
635 // only voltage, i_membrane_ or mechanism data index allowed. (mtype 0 means time)
636 double* stdindex2ptr(int mtype, int index, NrnThread& nt) {
637  if (mtype == voltage) { // voltage
638  int ix{index}; // relative to _actual_v
639  nrn_assert((ix >= 0) && (ix < nt.end));
640  if (nt._permute) {
641  node_permute(&ix, 1, nt._permute);
642  }
643  return nt._actual_v + ix;
644  } else if (mtype == i_membrane_) { // membrane current from fast_imem calculation
645  int ix{index}; // relative to nrn_fast_imem->nrn_sav_rhs
646  nrn_assert((ix >= 0) && (ix < nt.end));
647  if (nt._permute) {
648  node_permute(&ix, 1, nt._permute);
649  }
650  return nt.nrn_fast_imem->nrn_sav_rhs + ix;
651  } else if (mtype > 0 && mtype < static_cast<int>(corenrn.get_memb_funcs().size())) { //
652  Memb_list* ml = nt._ml_list[mtype];
653  nrn_assert(ml);
654  int ix = nrn_param_layout(index, mtype, ml);
655  if (ml->_permute) {
656  ix = nrn_index_permute(ix, mtype, ml);
657  }
658  return ml->data + ix;
659  } else if (mtype == 0) { // time
660  return &nt._t;
661  } else {
662  printf("stdindex2ptr does not handle mtype=%d\n", mtype);
663  nrn_assert(0);
664  }
665  return nullptr;
666 }
667 
668 // from i to (icnt, isz)
669 void nrn_inverse_i_layout(int i, int& icnt, int cnt, int& isz, int sz, int layout) {
670  if (layout == Layout::AoS) {
671  icnt = i / sz;
672  isz = i % sz;
673  } else if (layout == Layout::SoA) {
674  int padded_cnt = nrn_soa_padded_size(cnt, layout);
675  icnt = i % padded_cnt;
676  isz = i / padded_cnt;
677  } else {
678  assert(0);
679  }
680 }
681 
682 /**
683  * Cleanup global ion map created during mechanism registration
684  *
685  * In case of coreneuron standalone execution nrn_ion_global_map
686  * can be deleted at the end of execution. But in case embedded
687  * run via neuron, mechanisms are registered only once i.e. during
688  * first call to coreneuron. This is why we call cleanup only in
689  * case of standalone coreneuron execution via nrniv-core or
690  * special-core.
691  *
692  * @todo coreneuron should have finalise callback which can be
693  * called from NEURON for final memory cleanup including global
694  * state like registered mechanisms and ions map.
695  */
697  for (int i = 0; i < nrn_ion_global_map_size; i++) {
699  }
701  nrn_ion_global_map = nullptr;
703 }
704 
706  delete[] std::exchange(nt._fornetcon_perm_indices, nullptr);
707  delete[] std::exchange(nt._fornetcon_weight_perm, nullptr);
708 }
709 
710 /* nrn_threads_free() presumes all NrnThread and NrnThreadMembList data is
711  * allocated with malloc(). This is not the case here, so let's try and fix
712  * things up first. */
713 
714 void nrn_cleanup() {
715  clear_event_queue(); // delete left-over TQItem
716  for (auto psi: gid2in) {
717  delete psi.second;
718  }
719  gid2in.clear();
720  gid2out.clear();
721 
722  // clean nrnthread_chkpnt
723  if (nrnthread_chkpnt) {
724  delete[] nrnthread_chkpnt;
725  nrnthread_chkpnt = nullptr;
726  }
727 
728  // clean NrnThreads
729  for (int it = 0; it < nrn_nthread; ++it) {
730  NrnThread* nt = nrn_threads + it;
731  NrnThreadMembList* next_tml = nullptr;
734  for (NrnThreadMembList* tml = nt->tml; tml; tml = next_tml) {
735  Memb_list* ml = tml->ml;
736 
737  mod_f_t s = corenrn.get_memb_func(tml->index).destructor;
738  if (s) {
739  (*s)(nt, ml, tml->index);
740  }
741 
742  ml->data = nullptr; // this was pointing into memory owned by nt
743  free_memory(ml->pdata);
744  ml->pdata = nullptr;
746  ml->nodeindices = nullptr;
747  if (ml->_permute) {
748  delete[] ml->_permute;
749  ml->_permute = nullptr;
750  }
751 
752  if (ml->_thread) {
753  free_memory(ml->_thread);
754  ml->_thread = nullptr;
755  }
756 
757  // Destroy the global variables struct allocated in nrn_init
758  if (auto* const priv_dtor = corenrn.get_memb_func(tml->index).private_destructor) {
759  (*priv_dtor)(nt, ml, tml->index);
760  assert(!ml->instance);
761  assert(!ml->global_variables);
762  assert(ml->global_variables_size == 0);
763  }
764 
766  if (nrb) {
767  if (nrb->_size) {
768  free_memory(nrb->_pnt_index);
770  free_memory(nrb->_nrb_t);
771  free_memory(nrb->_nrb_flag);
772  free_memory(nrb->_displ);
773  free_memory(nrb->_nrb_index);
774  }
775  free_memory(nrb);
776  ml->_net_receive_buffer = nullptr;
777  }
778 
780  if (nsb) {
781  delete nsb;
782  ml->_net_send_buffer = nullptr;
783  }
784 
785  if (tml->dependencies)
786  free(tml->dependencies);
787 
788  next_tml = tml->next;
789  free_memory(tml->ml);
790  free_memory(tml);
791  }
792 
793  nt->_actual_rhs = nullptr;
794  nt->_actual_d = nullptr;
795  nt->_actual_a = nullptr;
796  nt->_actual_b = nullptr;
797 
799  nt->_v_parent_index = nullptr;
800 
801  free_memory(nt->_data);
802  nt->_data = nullptr;
803 
804  free(nt->_idata);
805  nt->_idata = nullptr;
806 
807  free_memory(nt->_vdata);
808  nt->_vdata = nullptr;
809 
810  if (nt->_permute) {
811  delete[] nt->_permute;
812  nt->_permute = nullptr;
813  }
814 
815  if (nt->presyns_helper) {
817  nt->presyns_helper = nullptr;
818  }
819 
820  if (nt->pntprocs) {
821  free_memory(nt->pntprocs);
822  nt->pntprocs = nullptr;
823  }
824 
825  if (nt->presyns) {
826  delete[] nt->presyns;
827  nt->presyns = nullptr;
828  }
829 
830  if (nt->pnt2presyn_ix) {
831  for (size_t i = 0; i < corenrn.get_has_net_event().size(); ++i) {
832  if (nt->pnt2presyn_ix[i]) {
833  free(nt->pnt2presyn_ix[i]);
834  }
835  }
837  }
838 
839  if (nt->netcons) {
840  delete[] nt->netcons;
841  nt->netcons = nullptr;
842  }
843 
844  if (nt->weights) {
845  free_memory(nt->weights);
846  nt->weights = nullptr;
847  }
848 
849  if (nt->_shadow_rhs) {
851  nt->_shadow_rhs = nullptr;
852  }
853 
854  if (nt->_shadow_d) {
855  free_memory(nt->_shadow_d);
856  nt->_shadow_d = nullptr;
857  }
858 
859  if (nt->_net_send_buffer_size) {
861  nt->_net_send_buffer = nullptr;
862  nt->_net_send_buffer_size = 0;
863  }
864 
865  if (nt->_watch_types) {
866  free(nt->_watch_types);
867  nt->_watch_types = nullptr;
868  }
869 
870  // mapping information is available only for non-empty NrnThread
871  if (nt->mapping && nt->ncell) {
872  delete ((NrnThreadMappingInfo*) nt->mapping);
873  }
874 
875  free_memory(nt->_ml_list);
876 
877  if (nt->nrn_fast_imem) {
878  fast_imem_free();
879  }
880  }
881 
882 #if NRN_MULTISEND
884 #endif
885 
886  netcon_in_presyn_order_.clear();
887 
889 
890  if (!corenrn.get_pnttype2presyn().empty()) {
891  corenrn.get_pnttype2presyn().clear();
892  }
893 
895 
897 }
898 
900  if (nt.trajec_requests) {
902  if (tr->n_trajec) {
903  delete[] tr->vpr;
904  if (tr->scatter) {
905  delete[] tr->scatter;
906  }
907  if (tr->varrays) {
908  delete[] tr->varrays;
909  }
910  delete[] tr->gather;
911  }
912  delete nt.trajec_requests;
913  nt.trajec_requests = nullptr;
914  }
915 }
916 
917 void read_phase1(NrnThread& nt, UserParams& userParams) {
918  Phase1 p1{userParams.file_reader[nt.id]};
919 
920  // Protect gid2in, gid2out and neg_gid2out
921  p1.populate(nt, mut);
922 }
923 
924 void read_phase2(NrnThread& nt, UserParams& userParams) {
925  Phase2 p2;
926  if (corenrn_embedded) {
927  p2.read_direct(nt.id, nt);
928  } else {
929  p2.read_file(userParams.file_reader[nt.id], nt);
930  }
931  p2.populate(nt, userParams);
932 }
933 
934 /** read mapping information for neurons */
935 void read_phase3(NrnThread& nt, UserParams& userParams) {
936  /** restore checkpoint state (before restoring queue items */
937  auto& F = userParams.file_reader[nt.id];
938  F.restore_checkpoint();
939 
940  /** mapping information for all neurons in single NrnThread */
941  NrnThreadMappingInfo* ntmapping = new NrnThreadMappingInfo();
942 
943  int count = 0;
944 
945  F.read_mapping_cell_count(&count);
946 
947  /** number of cells in mapping file should equal to cells in NrnThread */
948  nrn_assert(count == nt.ncell);
949 
950  /** for every neuron */
951  for (int i = 0; i < nt.ncell; i++) {
952  int gid, nsec, nseg, nseclist;
953 
954  // read counts
955  F.read_mapping_count(&gid, &nsec, &nseg, &nseclist);
956 
957  CellMapping* cmap = new CellMapping(gid);
958 
959  // read section-segment mapping for every section list
960  for (int j = 0; j < nseclist; j++) {
961  SecMapping* smap = new SecMapping();
962  F.read_mapping_info(smap);
963  cmap->add_sec_map(smap);
964  }
965 
966  ntmapping->add_cell_mapping(cmap);
967  }
968 
969  // make number #cells match with mapping size
970  nrn_assert((int) ntmapping->size() == nt.ncell);
971 
972  // set pointer in NrnThread
973  nt.mapping = (void*) ntmapping;
974  nt.summation_report_handler_ = std::make_unique<SummationReportMapping>();
975 }
976 
977 /* Returns the size of the dynamically allocated memory for NrnThreadMembList
978  * Includes:
979  * - Size of NrnThreadMembList
980  * - Size of Memb_list
981  * - Size of nodeindices
982  * - Size of _permute
983  * - Size of _thread
984  * - Size of NetReceive and NetSend Buffers
985  * - Size of int variables
986  * - Size of double variables (If include_data is enabled. Those variables are already counted
987  * since they point to nt->_data.)
988  */
989 size_t memb_list_size(NrnThreadMembList* tml, bool include_data) {
990  size_t nbyte = sizeof(NrnThreadMembList) + sizeof(Memb_list);
991  nbyte += tml->ml->nodecount * sizeof(int);
992  if (tml->ml->_permute) {
993  nbyte += tml->ml->nodecount * sizeof(int);
994  }
995  if (tml->ml->_thread) {
996  Memb_func& mf = corenrn.get_memb_func(tml->index);
997  nbyte += mf.thread_size_ * sizeof(ThreadDatum);
998  }
999  if (tml->ml->_net_receive_buffer) {
1000  nbyte += sizeof(NetReceiveBuffer_t) + tml->ml->_net_receive_buffer->size_of_object();
1001  }
1002  if (tml->ml->_net_send_buffer) {
1003  nbyte += sizeof(NetSendBuffer_t) + tml->ml->_net_send_buffer->size_of_object();
1004  }
1005  if (include_data) {
1006  nbyte += corenrn.get_prop_param_size()[tml->index] * tml->ml->nodecount * sizeof(double);
1007  }
1008  nbyte += corenrn.get_prop_dparam_size()[tml->index] * tml->ml->nodecount * sizeof(Datum);
1009 #ifdef DEBUG
1010  int i = tml->index;
1011  printf("%s %d psize=%d ppsize=%d cnt=%d nbyte=%ld\n",
1012  corenrn.get_memb_func(i).sym,
1013  i,
1016  tml->ml->nodecount,
1017  nbyte);
1018 #endif
1019  return nbyte;
1020 }
1021 
1022 /// Approximate count of number of bytes for the gid2out map
1023 size_t output_presyn_size(void) {
1024  if (gid2out.empty()) {
1025  return 0;
1026  }
1027  size_t nbyte = sizeof(gid2out) + sizeof(int) * gid2out.size() +
1028  sizeof(PreSyn*) * gid2out.size();
1029 #ifdef DEBUG
1030  printf(" gid2out table bytes=~%ld size=%ld\n", nbyte, gid2out.size());
1031 #endif
1032  return nbyte;
1033 }
1034 
1035 size_t input_presyn_size(void) {
1036  if (gid2in.empty()) {
1037  return 0;
1038  }
1039  size_t nbyte = sizeof(gid2in) + sizeof(int) * gid2in.size() +
1040  sizeof(InputPreSyn*) * gid2in.size();
1041 #ifdef DEBUG
1042  printf(" gid2in table bytes=~%ld size=%ld\n", nbyte, gid2in.size());
1043 #endif
1044  return nbyte;
1045 }
1046 
1047 size_t model_size(bool detailed_report) {
1048  long nbyte = 0;
1049  size_t sz_nrnThread = sizeof(NrnThread);
1050  size_t sz_presyn = sizeof(PreSyn);
1051  size_t sz_input_presyn = sizeof(InputPreSyn);
1052  size_t sz_netcon = sizeof(NetCon);
1053  size_t sz_pntproc = sizeof(Point_process);
1054  size_t nccnt = 0;
1055 
1056  std::vector<long> size_data(13, 0);
1057  std::vector<long> global_size_data_min(13, 0);
1058  std::vector<long> global_size_data_max(13, 0);
1059  std::vector<long> global_size_data_sum(13, 0);
1060  std::vector<float> global_size_data_avg(13, 0.0);
1061 
1062  for (int i = 0; i < nrn_nthread; ++i) {
1063  NrnThread& nt = nrn_threads[i];
1064  size_t nb_nt = 0; // per thread
1065  nccnt += nt.n_netcon;
1066 
1067  // Memb_list size
1068  int nmech = 0;
1069  for (auto tml = nt.tml; tml; tml = tml->next) {
1070  nb_nt += memb_list_size(tml, false);
1071  ++nmech;
1072  }
1073 
1074  // basic thread size includes mechanism data and G*V=I matrix
1075  nb_nt += sz_nrnThread;
1076  nb_nt += nt._ndata * sizeof(double) + nt._nidata * sizeof(int) + nt._nvdata * sizeof(void*);
1077  nb_nt += nt.end * sizeof(int); // _v_parent_index
1078 
1079  // network connectivity
1080  nb_nt += nt.n_pntproc * sz_pntproc + nt.n_netcon * sz_netcon + nt.n_presyn * sz_presyn +
1081  nt.n_input_presyn * sz_input_presyn + nt.n_weight * sizeof(double);
1082  nbyte += nb_nt;
1083 
1084 #ifdef DEBUG
1085  printf("ncell=%d end=%d nmech=%d\n", nt.ncell, nt.end, nmech);
1086  printf("ndata=%ld nidata=%ld nvdata=%ld\n", nt._ndata, nt._nidata, nt._nvdata);
1087  printf("nbyte so far %ld\n", nb_nt);
1088  printf("n_presyn = %d sz=%ld nbyte=%ld\n", nt.n_presyn, sz_presyn, nt.n_presyn * sz_presyn);
1089  printf("n_input_presyn = %d sz=%ld nbyte=%ld\n",
1090  nt.n_input_presyn,
1091  sz_input_presyn,
1092  nt.n_input_presyn * sz_input_presyn);
1093  printf("n_pntproc=%d sz=%ld nbyte=%ld\n",
1094  nt.n_pntproc,
1095  sz_pntproc,
1096  nt.n_pntproc * sz_pntproc);
1097  printf("n_netcon=%d sz=%ld nbyte=%ld\n", nt.n_netcon, sz_netcon, nt.n_netcon * sz_netcon);
1098  printf("n_weight = %d\n", nt.n_weight);
1099 
1100  printf("%d thread %d total bytes %ld\n", nrnmpi_myid, i, nb_nt);
1101 #endif
1102 
1103  if (detailed_report) {
1104  size_data[0] += nt.ncell;
1105  size_data[1] += nt.end;
1106  size_data[2] += nmech;
1107  size_data[3] += nt._ndata;
1108  size_data[4] += nt._nidata;
1109  size_data[5] += nt._nvdata;
1110  size_data[6] += nt.n_presyn;
1111  size_data[7] += nt.n_input_presyn;
1112  size_data[8] += nt.n_pntproc;
1113  size_data[9] += nt.n_netcon;
1114  size_data[10] += nt.n_weight;
1115  size_data[11] += nb_nt;
1116  }
1117  }
1118 
1119  nbyte += nccnt * sizeof(NetCon*);
1120  nbyte += output_presyn_size();
1121  nbyte += input_presyn_size();
1122 
1123  nbyte += nrnran123_instance_count() * nrnran123_state_size();
1124 
1125 #ifdef DEBUG
1126  printf("%d netcon pointers %ld nbyte=%ld\n", nrnmpi_myid, nccnt, nccnt * sizeof(NetCon*));
1127  printf("nrnran123 size=%ld cnt=%ld nbyte=%ld\n",
1128  nrnran123_state_size(),
1130  nrnran123_instance_count() * nrnran123_state_size());
1131  printf("%d total bytes %ld\n", nrnmpi_myid, nbyte);
1132 #endif
1133  if (detailed_report) {
1134  size_data[12] = nbyte;
1135 #if NRNMPI
1136  if (corenrn_param.mpi_enable) {
1137  // last arg is op type where 1 is sum, 2 is max and any other value is min
1138  nrnmpi_long_allreduce_vec(&size_data[0], &global_size_data_sum[0], 13, 1);
1139  nrnmpi_long_allreduce_vec(&size_data[0], &global_size_data_max[0], 13, 2);
1140  nrnmpi_long_allreduce_vec(&size_data[0], &global_size_data_min[0], 13, 3);
1141  for (int i = 0; i < 13; i++) {
1142  global_size_data_avg[i] = global_size_data_sum[i] / float(nrnmpi_numprocs);
1143  }
1144  } else
1145 #endif
1146  {
1147  global_size_data_max = size_data;
1148  global_size_data_min = size_data;
1149  global_size_data_avg.assign(size_data.cbegin(), size_data.cend());
1150  }
1151  // now print the collected data:
1152  if (nrnmpi_myid == 0) {
1153  printf("Memory size information for all NrnThreads per rank\n");
1154  printf("------------------------------------------------------------------\n");
1155  printf("%22s %12s %12s %12s\n", "field", "min", "max", "avg");
1156  printf("%22s %12ld %12ld %15.2f\n",
1157  "n_cell",
1158  global_size_data_min[0],
1159  global_size_data_max[0],
1160  global_size_data_avg[0]);
1161  printf("%22s %12ld %12ld %15.2f\n",
1162  "n_compartment",
1163  global_size_data_min[1],
1164  global_size_data_max[1],
1165  global_size_data_avg[1]);
1166  printf("%22s %12ld %12ld %15.2f\n",
1167  "n_mechanism",
1168  global_size_data_min[2],
1169  global_size_data_max[2],
1170  global_size_data_avg[2]);
1171  printf("%22s %12ld %12ld %15.2f\n",
1172  "_ndata",
1173  global_size_data_min[3],
1174  global_size_data_max[3],
1175  global_size_data_avg[3]);
1176  printf("%22s %12ld %12ld %15.2f\n",
1177  "_nidata",
1178  global_size_data_min[4],
1179  global_size_data_max[4],
1180  global_size_data_avg[4]);
1181  printf("%22s %12ld %12ld %15.2f\n",
1182  "_nvdata",
1183  global_size_data_min[5],
1184  global_size_data_max[5],
1185  global_size_data_avg[5]);
1186  printf("%22s %12ld %12ld %15.2f\n",
1187  "n_presyn",
1188  global_size_data_min[6],
1189  global_size_data_max[6],
1190  global_size_data_avg[6]);
1191  printf("%22s %12ld %12ld %15.2f\n",
1192  "n_presyn (bytes)",
1193  global_size_data_min[6] * sz_presyn,
1194  global_size_data_max[6] * sz_presyn,
1195  global_size_data_avg[6] * sz_presyn);
1196  printf("%22s %12ld %12ld %15.2f\n",
1197  "n_input_presyn",
1198  global_size_data_min[7],
1199  global_size_data_max[7],
1200  global_size_data_avg[7]);
1201  printf("%22s %12ld %12ld %15.2f\n",
1202  "n_input_presyn (bytes)",
1203  global_size_data_min[7] * sz_input_presyn,
1204  global_size_data_max[7] * sz_input_presyn,
1205  global_size_data_avg[7] * sz_input_presyn);
1206  printf("%22s %12ld %12ld %15.2f\n",
1207  "n_pntproc",
1208  global_size_data_min[8],
1209  global_size_data_max[8],
1210  global_size_data_avg[8]);
1211  printf("%22s %12ld %12ld %15.2f\n",
1212  "n_pntproc (bytes)",
1213  global_size_data_min[8] * sz_pntproc,
1214  global_size_data_max[8] * sz_pntproc,
1215  global_size_data_avg[8] * sz_pntproc);
1216  printf("%22s %12ld %12ld %15.2f\n",
1217  "n_netcon",
1218  global_size_data_min[9],
1219  global_size_data_max[9],
1220  global_size_data_avg[9]);
1221  printf("%22s %12ld %12ld %15.2f\n",
1222  "n_netcon (bytes)",
1223  global_size_data_min[9] * sz_netcon,
1224  global_size_data_max[9] * sz_netcon,
1225  global_size_data_avg[9] * sz_netcon);
1226  printf("%22s %12ld %12ld %15.2f\n",
1227  "n_weight",
1228  global_size_data_min[10],
1229  global_size_data_max[10],
1230  global_size_data_avg[10]);
1231  printf("%22s %12ld %12ld %15.2f\n",
1232  "NrnThread (bytes)",
1233  global_size_data_min[11],
1234  global_size_data_max[11],
1235  global_size_data_avg[11]);
1236  printf("%22s %12ld %12ld %15.2f\n",
1237  "model size (bytes)",
1238  global_size_data_min[12],
1239  global_size_data_max[12],
1240  global_size_data_avg[12]);
1241  }
1242  }
1243 
1244 #if NRNMPI
1245  if (corenrn_param.mpi_enable) {
1246  long global_nbyte = 0;
1247  nrnmpi_long_allreduce_vec(&nbyte, &global_nbyte, 1, 1);
1248  nbyte = global_nbyte;
1249  }
1250 #endif
1251 
1252  return nbyte;
1253 }
1254 
1255 } // namespace coreneuron
coreneuron::Phase2
Definition: phase2.hpp:24
coreneuron::UserParams::file_reader
std::vector< FileHandler > file_reader
Definition: user_params.hpp:40
coreneuron::delete_trajectory_requests
void delete_trajectory_requests(NrnThread &nt)
Definition: nrn_setup.cpp:899
coreneuron::NrnThread::netcons
NetCon * netcons
Definition: multicore.hpp:87
coreneuron::NrnThread::nrn_fast_imem
NrnFastImem * nrn_fast_imem
Definition: multicore.hpp:124
coreneuron::CheckPoints
Definition: nrn_checkpoint.hpp:17
coreneuron::Memb_func::thread_size_
int thread_size_
Definition: membfunc.hpp:47
coreneuron::model_size
size_t model_size(bool detailed_report)
Definition: nrn_setup.cpp:1047
multisend.hpp
free_memory
void free_memory(void *pointer)
Definition: memory.h:196
nrnran123.h
coreneuron::nrn_get_mechtype
int nrn_get_mechtype(const char *name)
Get mechanism type by the mechanism name.
Definition: mk_mech.cpp:138
coreneuron::corenrn_parameters::is_quiet
bool is_quiet()
Definition: corenrn_parameters.hpp:109
coreneuron::CellMapping
Compartment mapping information for a cell.
Definition: nrnsection_mapping.hpp:69
coreneuron::corenrn_parameters_data::cell_interleave_permute
unsigned cell_interleave_permute
Spike Compression.
Definition: corenrn_parameters.hpp:53
coreneuron::NrnThread::_vdata
void ** _vdata
Definition: multicore.hpp:108
coreneuron::voltage
@ voltage
Definition: nrniv_decl.h:19
coreneuron::nrn_nthread
int nrn_nthread
Definition: multicore.cpp:55
coreneuron::NrnThread::_shadow_d
double * _shadow_d
Definition: multicore.hpp:120
OMP_Mutex
Definition: nrnmutdec.hpp:55
coreneuron::setup_ThreadData
void setup_ThreadData(NrnThread &nt)
Definition: nrn_setup.cpp:570
coreneuron::nrnthread_chkpnt
NrnThreadChkpnt * nrnthread_chkpnt
Definition: nrn_checkpoint.cpp:651
utils.hpp
coreneuron::nrn_partrans::gap_data_indices_setup
void gap_data_indices_setup(NrnThread *nt)
For now, until conceptualization of the ordering is clear, just replace src setup_info_ indices value...
Definition: partrans_setup.cpp:239
coreneuron::write_mech_report
void write_mech_report()
display global mechanism count
Definition: mech_report.cpp:19
coreneuron::nrnthreads_netcon_srcgid
std::vector< int * > nrnthreads_netcon_srcgid
Only for setup vector of netcon source gids.
Definition: nrn_setup.cpp:164
coreneuron::NrnThread::_fornetcon_weight_perm
size_t * _fornetcon_weight_perm
Definition: multicore.hpp:152
coreneuron::Phase2::read_direct
void read_direct(int thread_id, const NrnThread &nt)
Definition: phase2.cpp:256
coreneuron::netcon_in_presyn_order_
std::vector< NetCon * > netcon_in_presyn_order_
InputPreSyn.nc_index_ to + InputPreSyn.nc_cnt_ give the NetCon*.
Definition: nrn_setup.cpp:161
coreneuron::Point_process
Definition: mechanism.hpp:35
coreneuron::nrnmpi_numprocs
int nrnmpi_numprocs
Definition: nrnmpi_def_cinc.cpp:10
coreneuron::NrnThread::_t
double _t
Definition: multicore.hpp:76
coreneuron::Datum
int Datum
Definition: nrnconf.h:23
coreneuron::InputPreSyn::nc_cnt_
int nc_cnt_
Definition: netcon.hpp:135
coreneuron::nrn_partrans::gap_mpi_setup
void gap_mpi_setup(int ngroup)
Definition: partrans_setup.cpp:46
SetupTransferInfo
Definition: partrans.hpp:94
nrnoc_aux.hpp
coreneuron::mut
static OMP_Mutex mut
Definition: nrn_setup.cpp:152
coreneuron::CoreNeuron::get_memb_func
auto & get_memb_func(size_t idx)
Definition: coreneuron.hpp:138
coreneuron::NrnThread::_net_send_buffer_size
int _net_send_buffer_size
Definition: multicore.hpp:138
coreneuron::NrnThread::presyns
PreSyn * presyns
Definition: multicore.hpp:83
coreneuron::TrajectoryRequests::n_trajec
int n_trajec
Definition: multicore.hpp:63
SetupTransferInfo::src_sid
std::vector< sgid_t > src_sid
Definition: partrans.hpp:95
nrn2core_trajectory_return_
void(* nrn2core_trajectory_return_)(int tid, int n_pr, int bsize, int vecsz, void **vpr, double t)
Definition: nrn_setup.cpp:69
coreneuron::nrnran123_instance_count
std::size_t nrnran123_instance_count()
Definition: nrnran123.cpp:103
coreneuron::NrnThread::presyns_helper
PreSynHelper * presyns_helper
Definition: multicore.hpp:84
coreneuron::nrn_inverse_i_layout
void nrn_inverse_i_layout(int i, int &icnt, int cnt, int &isz, int sz, int layout)
Definition: nrn_setup.cpp:669
coreneuron::nrn_threads_free
void nrn_threads_free()
Definition: multicore.cpp:125
coreneuron::check_bbcore_write_version
void check_bbcore_write_version(const char *)
Definition: nrnoc_aux.cpp:128
coreneuron::Phase1
Definition: phase1.hpp:20
coreneuron::read_phase2
void read_phase2(NrnThread &nt, UserParams &userParams)
Definition: nrn_setup.cpp:924
coreneuron::NrnThread::_watch_types
int * _watch_types
Definition: multicore.hpp:142
coreneuron::nrn_read_filesdat
void nrn_read_filesdat(int &ngrp, int *&grp, const char *filesdat)
Definition: nrn_setup.cpp:171
coreneuron::NrnThread::id
int id
Definition: multicore.hpp:99
coreneuron::NetSendBuffer_t
Definition: mechanism.hpp:62
coreneuron::nrn_cleanup_ion_map
void nrn_cleanup_ion_map()
Cleanup global ion map created during mechanism registration.
Definition: nrn_setup.cpp:696
coreneuron::stdindex2ptr
double * stdindex2ptr(int mtype, int index, NrnThread &nt)
Definition: nrn_setup.cpp:636
coreneuron::Memb_list
Definition: mechanism.hpp:131
coreneuron::nrn_threads_create
void nrn_threads_create(int n)
Definition: multicore.cpp:102
coreneuron::read_phasegap
void read_phasegap(NrnThread &nt, UserParams &userParams)
Definition: nrn_setup.cpp:588
coreneuron::NrnThread::tml
NrnThreadMembList * tml
Definition: multicore.hpp:80
coreneuron::nrn_soa_padded_size
int nrn_soa_padded_size(int cnt, int layout)
calculate size after padding for specific memory layout
Definition: mem_layout_util.cpp:15
coreneuron::corenrn_parameters_data::model_stats
bool model_stats
Print version and exit.
Definition: corenrn_parameters.hpp:71
coreneuron::read_phase1
void read_phase1(NrnThread &nt, UserParams &userParams)
Definition: nrn_setup.cpp:917
coreneuron::CellMapping::add_sec_map
void add_sec_map(SecMapping *s)
add new SecMapping
Definition: nrnsection_mapping.hpp:105
coreneuron::NrnThreadMembList::index
int index
Definition: multicore.hpp:35
coreneuron::NrnThread::_actual_rhs
double * _actual_rhs
Definition: multicore.hpp:111
coreneuron::output_presyn_size
size_t output_presyn_size(void)
Approximate count of number of bytes for the gid2out map.
Definition: nrn_setup.cpp:1023
coreneuron::use_multisend_
bool use_multisend_
Definition: multisend.cpp:53
coreneuron.hpp
coreneuron::nrn_mk_table_check
void nrn_mk_table_check()
Definition: multicore.cpp:133
coreneuron::NetReceiveBuffer_t::_pnt_index
int * _pnt_index
Definition: mechanism.hpp:45
coreneuron::nrn_fatal_error
static void nrn_fatal_error(const char *msg)
Definition: nrnmpi.cpp:30
coreneuron::NrnThread::_actual_a
double * _actual_a
Definition: multicore.hpp:113
coreneuron::nrnmpi_long_allreduce_vec
mpi_function< cnrn_make_integral_constant_t(nrnmpi_long_allreduce_vec_impl)> nrnmpi_long_allreduce_vec
Definition: nrnmpidec.cpp:49
coreneuron::NrnThread::_nvdata
size_t _nvdata
Definition: multicore.hpp:104
coreneuron
THIS FILE IS AUTO GENERATED DONT MODIFY IT.
Definition: corenrn_parameters.cpp:12
coreneuron::NrnThreadMappingInfo::size
size_t size() const
number of cells
Definition: nrnsection_mapping.hpp:157
coreneuron::UserParams
This structure is data needed is several part of nrn_setup, phase1 and phase2.
Definition: user_params.hpp:18
coreneuron::NrnThread::trajec_requests
TrajectoryRequests * trajec_requests
Definition: multicore.hpp:146
fast_imem.hpp
coreneuron::NetReceiveBuffer_t::_nrb_index
int * _nrb_index
Definition: mechanism.hpp:43
coreneuron::NetSendBuffer_t::size_of_object
size_t size_of_object()
Definition: mechanism.hpp:88
coreneuron::NrnThread::n_weight
int n_weight
Definition: multicore.hpp:91
phase1.hpp
coreneuron::NrnThread::n_pntproc
int n_pntproc
Definition: multicore.hpp:90
coreneuron::t
double t
Definition: register_mech.cpp:22
corenrn_parameters.hpp
coreneuron::NrnThread::_v_parent_index
int * _v_parent_index
Definition: multicore.hpp:126
nrn2core_all_weights_return_
void(* nrn2core_all_weights_return_)(std::vector< double * > &weights)
Definition: nrn_setup.cpp:73
coreneuron::i
int i
Definition: cellorder.cpp:485
coreneuron::nrn_setup
void nrn_setup(const char *filesdat, bool is_mapping_needed, CheckPoints &checkPoints, bool run_setup_cleanup, const char *datpath, const char *restore_path, double *mindelay)
Definition: nrn_setup.cpp:401
nrn_setup.hpp
coreneuron::NrnThread::_ml_list
Memb_list ** _ml_list
Definition: multicore.hpp:81
nrniv_decl.h
coreneuron::PreSyn
Definition: netcon.hpp:104
coreneuron::destroy_interleave_info
void destroy_interleave_info()
Definition: cellorder.cpp:101
coreneuron::i_membrane_
@ i_membrane_
Definition: nrniv_decl.h:19
coreneuron::NrnThread::_idata
int * _idata
Definition: multicore.hpp:107
coreneuron::nrn_param_layout
int nrn_param_layout(int i, int mtype, Memb_list *ml)
Definition: mem_layout_util.cpp:52
coreneuron::nrn_multithread_job
void nrn_multithread_job(F &&job, Args &&... args)
Definition: multicore.hpp:161
coreneuron::CoreNeuron::get_prop_dparam_size
auto & get_prop_dparam_size()
Definition: coreneuron.hpp:170
nrn2core_trajectory_values_
void(* nrn2core_trajectory_values_)(int tid, int n_pr, void **vpr, double t)
Definition: nrn_setup.cpp:67
coreneuron::nrn_multisend_cleanup
void nrn_multisend_cleanup()
coreneuron::TrajectoryRequests::scatter
double ** scatter
Definition: multicore.hpp:59
coreneuron::NrnThreadMappingInfo
Compartment mapping information for NrnThread.
Definition: nrnsection_mapping.hpp:152
corenrn_embedded_nthread
int corenrn_embedded_nthread
Definition: nrn_setup.cpp:47
coreneuron::CoreNeuron::get_memb_funcs
auto & get_memb_funcs()
Definition: coreneuron.hpp:134
coreneuron::NetCon
Definition: netcon.hpp:47
coreneuron::nrn_ion_global_map
double ** nrn_ion_global_map
coreneuron::CoreNeuron::get_has_net_event
auto & get_has_net_event()
Definition: coreneuron.hpp:202
coreneuron::UserParams::gidgroups
const int *const gidgroups
Array of cell group numbers (indices)
Definition: user_params.hpp:35
nrnsection_mapping.hpp
coreneuron::NetReceiveBuffer_t
Definition: mechanism.hpp:41
coreneuron::NrnThread::_net_send_buffer
int * _net_send_buffer
Definition: multicore.hpp:140
coreneuron::mod_f_t
void(*)(NrnThread *, Memb_list *, int) mod_f_t
Definition: membfunc.hpp:24
nrnmpi.hpp
coreneuron::NrnThread::n_presyn
int n_presyn
Definition: multicore.hpp:94
coreneuron::Memb_func::thread_mem_init_
void(* thread_mem_init_)(ThreadDatum *)
Definition: membfunc.hpp:48
coreneuron::NrnThread::_ndata
size_t _ndata
Definition: multicore.hpp:103
node_permute.h
coreneuron::nrn_ion_global_map_size
int nrn_ion_global_map_size
coreneuron::nrn_index_permute
int nrn_index_permute(int ix, int type, Memb_list *ml)
Definition: node_permute.cpp:363
coreneuron::gid2in
std::map< int, InputPreSyn * > gid2in
Definition: nrn_setup.cpp:158
coreneuron::NrnThread
Definition: multicore.hpp:75
coreneuron::NrnThreadMembList
Definition: multicore.hpp:32
coreneuron::Memb_func
Definition: membfunc.hpp:32
coreneuron::TrajectoryRequests::varrays
double ** varrays
Definition: multicore.hpp:60
nrn2core_get_trajectory_requests_
void(* nrn2core_get_trajectory_requests_)(int tid, int &bsize, int &n_pr, void **&vpr, int &n_trajec, int *&types, int *&indices, double **&pvars, double **&varrays)
Definition: nrn_setup.cpp:57
mech_report.h
cnt
#define cnt
Definition: tqueue.hpp:44
coreneuron::nrnthreads_netcon_negsrcgid_tid
std::vector< std::vector< int > > nrnthreads_netcon_negsrcgid_tid
If a nrnthreads_netcon_srcgid is negative, need to determine the thread when in order to use the corr...
Definition: nrn_setup.cpp:168
coreneuron::set_mindelay
double set_mindelay(double maxdelay)
Definition: netpar.cpp:643
coreneuron::NetReceiveBuffer_t::_weight_index
int * _weight_index
Definition: mechanism.hpp:46
coreneuron::determine_inputpresyn
void determine_inputpresyn()
Definition: nrn_setup.cpp:248
coreneuron::NrnThread::_shadow_rhs
double * _shadow_rhs
Definition: multicore.hpp:118
coreneuron::node_permute
void node_permute(int *vec, int n, int *permute)
Definition: node_permute.cpp:337
coreneuron::patstimtype
int patstimtype
Definition: nrn_checkpoint.cpp:653
partrans.hpp
coreneuron::corenrn_param
corenrn_parameters corenrn_param
Printing method.
Definition: corenrn_parameters.cpp:268
coreneuron::TrajectoryRequests::vpr
void ** vpr
Definition: multicore.hpp:58
coreneuron::NrnThread::_data
double * _data
Definition: multicore.hpp:106
coreneuron::read_phase3
void read_phase3(NrnThread &nt, UserParams &userParams)
read mapping information for neurons
Definition: nrn_setup.cpp:935
coreneuron::memb_list_size
size_t memb_list_size(NrnThreadMembList *tml, bool include_data)
Definition: nrn_setup.cpp:989
coreneuron::AoS
@ AoS
Definition: nrniv_decl.h:69
coreneuron::nrn_threads
NrnThread * nrn_threads
Definition: multicore.cpp:56
coreneuron::nrn_fast_imem_alloc
void nrn_fast_imem_alloc()
Definition: fast_imem.cpp:32
coreneuron::corenrn
CoreNeuron corenrn
Definition: multicore.cpp:53
coreneuron::TrajectoryRequests
Definition: multicore.hpp:57
coreneuron::delete_fornetcon_info
void delete_fornetcon_info(NrnThread &nt)
Definition: nrn_setup.cpp:705
coreneuron::Memb_list::_net_send_buffer
NetSendBuffer_t * _net_send_buffer
Definition: mechanism.hpp:143
coreneuron::NrnThread::pnt2presyn_ix
int ** pnt2presyn_ix
Definition: multicore.hpp:85
coreneuron::netpar_tid_gid2ps
void netpar_tid_gid2ps(int tid, int gid, PreSyn **ps, InputPreSyn **psi)
Definition: nrn_setup.cpp:225
coreneuron::PreSyn::nc_index_
int nc_index_
Definition: netcon.hpp:109
coreneuron::ThreadDatum
Definition: mechanism.hpp:26
coreneuron::PreSyn::nc_cnt_
int nc_cnt_
Definition: netcon.hpp:110
coreneuron::NrnThread::_actual_d
double * _actual_d
Definition: multicore.hpp:112
coreneuron::NrnThread::_nidata
size_t _nidata
Definition: multicore.hpp:105
coreneuron::Memb_list::nodecount
int nodecount
Definition: mechanism.hpp:144
coreneuron::Memb_list::_net_receive_buffer
NetReceiveBuffer_t * _net_receive_buffer
Definition: mechanism.hpp:142
coreneuron::Memb_list::pdata
Datum * pdata
Definition: mechanism.hpp:140
coreneuron::InputPreSyn::nc_index_
int nc_index_
Definition: netcon.hpp:134
nrnconf.h
coreneuron::Phase2::populate
void populate(NrnThread &nt, const UserParams &userParams)
Definition: phase2.cpp:918
coreneuron::NrnThread::_fornetcon_perm_indices
size_t * _fornetcon_perm_indices
Definition: multicore.hpp:150
coreneuron::nrn_p_construct
void nrn_p_construct()
Definition: netcvode.cpp:175
nrnreport.hpp
coreneuron::NrnThreadMembList::next
NrnThreadMembList * next
Definition: multicore.hpp:33
weights
#define weights
Definition: md1redef.h:42
coreneuron::NrnThread::weights
double * weights
Definition: multicore.hpp:88
cellorder.hpp
nrn_checkpoint.hpp
coreneuron::nrn_setup_cleanup
void nrn_setup_cleanup()
Clean up.
Definition: nrn_setup.cpp:391
coreneuron::nrn_cleanup
void nrn_cleanup()
Definition: nrn_setup.cpp:714
coreneuron::nrn_partrans::gap_cleanup
void gap_cleanup()
Definition: partrans_setup.cpp:271
coreneuron::gid2out
std::map< int, PreSyn * > gid2out
Maps for ouput and input presyns.
Definition: nrn_setup.cpp:157
coreneuron::NrnFastImem::nrn_sav_rhs
double * nrn_sav_rhs
Definition: multicore.hpp:53
coreneuron::use_solve_interleave
bool use_solve_interleave
Definition: solve_core.cpp:13
coreneuron::NrnThreadChkpnt
Definition: nrn_checkpoint.hpp:87
nrnmutdec.hpp
corenrn_embedded
bool corenrn_embedded
--> Coreneuron
Definition: nrn_setup.cpp:46
multicore.hpp
coreneuron::nrn_wtime
double nrn_wtime()
Definition: utils.cpp:22
coreneuron::NrnThread::pntprocs
Point_process * pntprocs
Definition: multicore.hpp:82
coreneuron::create_interleave_info
void create_interleave_info()
Definition: cellorder.cpp:96
coreneuron::InputPreSyn
Definition: netcon.hpp:132
coreneuron::NetReceiveBuffer_t::_nrb_flag
double * _nrb_flag
Definition: mechanism.hpp:48
coreneuron::CoreNeuron::get_prop_param_size
auto & get_prop_param_size()
Definition: coreneuron.hpp:166
coreneuron::NetReceiveBuffer_t::size_of_object
size_t size_of_object()
Definition: mechanism.hpp:53
coreneuron::corenrn_parameters_data::mpi_enable
bool mpi_enable
Initialization seed for random number generator (int)
Definition: corenrn_parameters.hpp:59
coreneuron::UserParams::ngroup
const int ngroup
direct memory mode with neuron, do not open files Number of local cell groups
Definition: user_params.hpp:33
coreneuron::NrnThread::_actual_v
double * _actual_v
Definition: multicore.hpp:115
coreneuron::NrnThread::mapping
void * mapping
Definition: multicore.hpp:143
phase2.hpp
coreneuron::Memb_list::_thread
ThreadDatum * _thread
Definition: mechanism.hpp:141
coreneuron::neg_gid2out
std::vector< std::map< int, PreSyn * > > neg_gid2out
Vector of maps for negative presyns.
Definition: nrn_setup.cpp:155
coreneuron::SecMapping
Section to segment mapping.
Definition: nrnsection_mapping.hpp:33
coreneuron::NrnThread::n_netcon
int n_netcon
Definition: multicore.hpp:92
coreneuron::Phase2::read_file
void read_file(FileHandler &F, const NrnThread &nt)
Definition: phase2.cpp:110
coreneuron::nrn_partrans::TransferThreadData
The basic problem is to copy sources to targets.
Definition: partrans.hpp:78
nrn2core_all_spike_vectors_return_
int(* nrn2core_all_spike_vectors_return_)(std::vector< double > &spikevec, std::vector< int > &gidvec)
Definition: nrn_setup.cpp:71
coreneuron::NrnThread::summation_report_handler_
std::unique_ptr< SummationReportMapping > summation_report_handler_
Definition: multicore.hpp:144
nrn2core_group_ids_
void(* nrn2core_group_ids_)(int *)
Definition: nrn_setup.cpp:49
coreneuron::nrn_have_gaps
bool nrn_have_gaps
variables defined in coreneuron library
Definition: partrans.cpp:21
coreneuron::fast_imem_free
void fast_imem_free()
Definition: fast_imem.cpp:21
coreneuron::NrnThread::n_input_presyn
int n_input_presyn
Definition: multicore.hpp:93
coreneuron::NrnThread::_actual_b
double * _actual_b
Definition: multicore.hpp:114
coreneuron::nrnmpi_myid
int nrnmpi_myid
Definition: nrnmpi_def_cinc.cpp:11
coreneuron::TrajectoryRequests::gather
double ** gather
Definition: multicore.hpp:61
coreneuron::version
Project version information.
Definition: config.h:26
coreneuron::Memb_list::data
double * data
Definition: mechanism.hpp:139
coreneuron::NrnThread::end
int end
Definition: multicore.hpp:98
coreneuron::NetReceiveBuffer_t::_displ
int * _displ
Definition: mechanism.hpp:42
coreneuron::CoreNeuron::get_pnttype2presyn
auto & get_pnttype2presyn()
Definition: coreneuron.hpp:206
coreneuron::ecalloc_align
void * ecalloc_align(size_t n, size_t size, size_t alignment)
coreneuron::nrn_multisend_setup
void nrn_multisend_setup()
coreneuron::nrn_partrans::setup_info_
SetupTransferInfo * setup_info_
Definition: partrans_setup.cpp:23
coreneuron::NetReceiveBuffer_t::_size
int _size
Definition: mechanism.hpp:51
nrn_assert
#define nrn_assert(x)
assert()-like macro, independent of NDEBUG status
Definition: nrn_assert.h:33
coreneuron::NrnThreadMappingInfo::add_cell_mapping
void add_cell_mapping(CellMapping *c)
add mapping information of new cell
Definition: nrnsection_mapping.hpp:181
coreneuron::SoA
@ SoA
Definition: nrniv_decl.h:69
coreneuron::NrnThreadMembList::ml
Memb_list * ml
Definition: multicore.hpp:34
nrn_assert.h
memory.h
nrnmpi.h
coreneuron::NrnThread::ncell
int ncell
Definition: multicore.hpp:97
coreneuron::NrnThread::_permute
int * _permute
Definition: multicore.hpp:127
sgid_t
int sgid_t
Definition: partrans.hpp:20
coreneuron::nrn_partrans::transfer_thread_data_
TransferThreadData * transfer_thread_data_
Definition: partrans.cpp:25
coreneuron::NetReceiveBuffer_t::_nrb_t
double * _nrb_t
Definition: mechanism.hpp:47
coreneuron::Memb_list::nodeindices
int * nodeindices
Definition: mechanism.hpp:137
coreneuron::Memb_list::_permute
int * _permute
Definition: mechanism.hpp:138
coreneuron::clear_event_queue
void clear_event_queue()
Definition: cvodestb.cpp:47
coreneuron::input_presyn_size
size_t input_presyn_size(void)
Definition: nrn_setup.cpp:1035